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A B S T R A C T   

Pyrite (FeS2) framboids, spheroidal groups of discrete equant pyrite microcrysts, are found in sediments of all 
geological ages. The size of a pyrite framboid is established during early diagenesis and preserved through time. 
Framboid size distributions are hence useful for the evaluation of depositional conditions. In this work, we 
present machine learning approaches to characterize the size distributions of pyrite framboids to understand the 
intensity and duration of anoxia and euxinia during the Middle Devonian of the Appalachian foreland basin by 
analyzing framboid size distributions of the Marcellus Shale from Lycoming County, Pennsylvania. Importantly, 
we overcome the time-consuming and laborious nature of current manual tracing methods to enable the pro-
cessing of high volumes of micrograph data. Specifically, we implement convolutional neural networks (CNNs) to 
characterize framboids from 14 samples across depths in the Marcellus Shale. We show that CNNs enable the 
precise and fast measurement of framboid size distributions from scanning electron micrographs. CNN archi-
tectures including Inception, ResNet, Inception-Resnet, and Mask R-CNN were trained and tested on a total of 
~6,800 framboids from 128 grayscale and 32 colored scanning electron micrographs. Kolmogorov-Smirnov tests 
on the framboidal equivalent diameter distributions measured from CNNs and manual tracing show that the CNN 
algorithms detected framboids with up to 99% precision. Importantly, once trained, the CNNs were ~100 times 
faster than current manual tracing. A straightforward extension of this work includes the application of CNNs to 
characterize pores, fractures, organic matter, and/or mineral grains in geological materials.   

1. Introduction 

Marine anoxia, a condition where waters are depleted of oxygen, is 
one of the “Big Five” mass extinction mechanisms proposed. Impor-
tantly, marine anoxia is believed to have caused the End-Permian 
Extinction (~252 Ma) that eliminated ~ 95% of marine species (Raup 
and Sepkoski, 1982; Sepkoski, 1996; Wignall and Twitchett, 1996; 
Payne et al., 2004; DiChristina et al., 2006; Meyer et al., 2008; Bren-
necka et al., 2011; Lau et al., 2016). To understand the paleo-redox 
change in geologic history, one approach is to analyze the characteris-
tics of pyrite (FeS2) framboids in mudstones. Specifically, the sizes of 
pyrite framboids are dictated by local anoxia and euxinia (i.e., low ox-
ygen and high hydrogen sulfide, H2S, level) conditions during their 
formation and are preserved in time thereafter (e.g., Wilkin et al., 1996, 
1997; Wignall and Newton, 1998; Bond and Wignall, 2010; Blood and 
Lash, 2015; Huang et al., 2017). The use of pyrite framboids as a 

geochemical proxy for anoxia/euxinia, therefore, is advantageous due to 
its relative independence from grain sizes and subsequent geochemical 
activity (Wilkin et al., 1996, 1997), however pyrite framboid sizes may 
also be controlled by other factors including sedimentation rates that 
influence the nucleation and growth times of framboids formed in the 
sediment (e.g., Gallego-Torres et al., 2015). 

Pyrite framboids are clusters of discrete equant pyrite microcrysts 
that are arranged into a spherical or spheroidal/ellipsoidal external 
structure (Love, 1966) Rickard, 1970). Framboidal pyrites are distinct 
from other textures of pyrite (i.e., fibrous, radiating, nodular, and 
euhedral pore-filling or replacement forms) by their equant microcrysts, 
external symmetry, and geometrical regularity (Rickard, 1970). The 
existence of equant microcrysts suggests simultaneous nucleation and 
constant growth rates prior to aggregation. 

Sedimentary pyrite formation is controlled by the concentration of 
dissolved sulfate, the rate of organic matter decomposition (i.e., degree 
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of anoxia/euxinia), and the supply of reactive detrital iron minerals 
(Berner, 1970, 1984). Specifically, pyrite formation is enabled by 
sulfate-reducing micro-organisms that reduce sulfate (SO4

2− , electron 
acceptor) into hydrogen sulfide/bisulfide (H2S/HS− ) in anoxic and/or 
euxinic sediments. Characterization of pyrite framboid size distribu-
tions, therefore, provides information about the degree of anoxia and 
euxinia in the depositional environment. In oxygen-deprived deposi-
tional environments (anoxic or euxinic conditions), framboid formation 
is transport limited (i.e., framboids are formed in the water column 
and/or sediments and sink below the iron reduction zone where growth 
is stopped) and the framboids are limited to small diameters (≲ 5–6 μm) 
(Bond and Wignall, 2010; Blood and Lash, 2015). On the other hand, in 
oxygen-available environments (e.g., oxic or dysoxic conditions), the 
formation of pyrite framboids is reaction limited (i.e., formed near the 
water-sediment interface where their sizes are governed by locally 
available reactants) and the resulting pyrite framboids are larger and 
more variable in size (Wilkin et al., 1996; Wilkin and Barnes, 1997; Suits 
and Wilkin, 1998; Wei et al., 2012). 

To delineate changes in depositional conditions, variations in fram-
boid size distributions (e.g., mean, minimum, maximum, standard de-
viation, and skewness of the framboid diameters) are characterized in 
sedimentary succession (Wilkin et al., 1996, 1997; Wignall and Newton, 
1998; Huang et al., 2017; Bond and Wignall, 2010; Blood and Lash, 
2015; Zhou and Jiang, 2009). Current methods to quantify pyrite 
framboid size distributions in sedimentary materials include (i) cen-
trifugal separation of pyrites from the sample, and (ii) manual tracing of 
pyrite framboids from micrographs. Centrifugation yields only 
~50–70% of the total pyrite in the sample when benchmarked to results 
from sequential extraction and therefore does not provide a represen-
tative sample for analysis (Wilkin et al., 1996; Shen et al., 2007). Image 
analyses of micrographs from optical light microscopy and scanning 
electron microscopy (SEM) yield up to 100% of the framboids available 
in the cross-section (Wilkin et al., 1996, 1997; Wang et al., 2013; Kar-
duck, 2015; Blood and Lash, 2015; Wignall and Newton, 1998; Bond and 
Wignall, 2010; Shen et al., 2007; Zhou and Jiang, 2009; Huang et al., 
2017). While framboid diameters traced from micrographs are subject to 
underestimates of the true diameter due to uncertainty in the cutting 
plane of the framboid spheroid, deviations are limited to ≲ 10% if more 
than 100 framboids are measured (Wilkin et al. (1996)). As a result, 
image analysis of pyrite framboids is the predominant method that is 
used to characterize depositional conditions (e.g., Permian–Triassic 
boundary in equatorial eastern Paleotethys of China (Shen et al., 2007), 
eastern Greenland (Wignall and Twitchett, 2002), the Boreal shelf seas 
of Spitsbergen, Greenland and mid-latitude Neotethyan oceans of 
Western Australia (Bond and Wignall, 2010), the eastern Panthalassan 
margin of Idaho, United States (Bond and Wignall, 2010), southwestern 
Japan (Isozaki, 1997), Sosio valley (Wignall and Twitchett, 2002), Italy 
(Wignall and Twitchett, 1996), Slovenia (Wignall and Twitchett, 1996), 
Kashmir (Wignall et al., 2005), the Devonian shale (e.g., Schieber and 
Baird, 2001; Bond et al., 2004; Formolo and Lyons, 2007; Marynowski 
et al., 2007; Blood and Lash, 2015)). 

Identification of pyrite from other minerals in SEM is enabled by its 
high back-scattered electron (BSE) intensity. Current methods to iden-
tify framboid sizes from SEM images, however, are limited to manual 
and semi-automated tracing that is labor- and time-intensive, and results 
in a small sample of framboids analyzed. Limitations in the size of the 
dataset (i.e., number of framboids analyzed) reduces the accuracy and 
the volume of information generated and thus limits the ability to 
determine the sedimentary redox conditions. In addition, human biasing 
(e.g., bias towards “better” samples) also influences data collection. 

To generate larger datasets of framboid sizes that are immune to 
human biasing in a timely manner, automated image processing is 
favorable. Current semi-automated image processing methods identify 
pyrite from SEM images by leveraging its high BSE intensity through 
techniques including histogram thresholding, K-means clustering, and 
watershed segmentation (Roduit,), but are limited in their applicability. 

Specifically, variations in instrument settings (e.g., magnification, 
electron energy, and imaging aperture) introduce differences in back-
ground image intensities and, therefore, differences in the intensities of 
framboids. Variation in framboid intensities requires modifications in 
thresholding parameters, and therefore weakens the ability to automate 
simple threshold-based image processing workflows. Currently, thresh-
olding parameters are selected by human operators that are prone to 
subjective bias and inconsistent parameter selection. Human-based 
image processing of geological materials are therefore impractical, 
and a more robust and automatic method is required to characterize 
geological features. 

Machine learning (ML) is a state-of-the-art method that enables the 
automated extraction of geological features from micrographs. Favor-
ably, ML methods are fast, robust, and optimized to process high vol-
umes of data. Both supervised and unsupervised learning techniques 
have been applied to estimate porosity from thin sections (Richa et al., 
2006). Koeshidayatullah et al. (2020) measured porosity of carbonate 
thin section materials with a fully automated DCNN based object 
detection method. Tang and Spikes (2017) presented a workflow for the 
semantic segmentation of SEM and EDS elemental maps, and Tang et al. 
(2020) extended the application of machine learning to point counting 
and segmentation of arenite in thin sections. Convolutional neural net-
works have been applied to SEM images at the microscale (Anderson 
et al., 2020; Ikeda et al., 2019). Supervised machine learning techniques 
including Classification and Regression Trees (CART), k-Nearest 
Neighbor (k-NN), and Random Forest (RF) have been applied to segment 
geological materials, including sand grain recognition (Maitre et al., 
2019). Wu et al. (2019) presented a machine-learning-assisted workflow 
that involved feature extraction to identify five components from 
grayscale images: pores/cracks, kerogen, calcite, pyrite, and rock ma-
trix. Further, Tian and Daigle (2019) characterized shale microstruc-
tures grayscale BSE images and EDS elemental maps using machine 
learning. Deep learning-based methods have also been applied by Chen 
et al. (2020) where a U-net architecture was used for semantic seg-
mentation of clay aggregates and for mineral classification. 

In this work, we propose a robust ML method to extract framboid 
features and to estimate their statistical characteristics using two classes 
of convolutional neural networks: object detection and instance seg-
mentation. Pyrite framboids make an excellent test case for ML-based 
image processing due to its intensity in SEM images and its composi-
tion (Fe, S) in EDS images. Specifically, elemental distributions derived 
from EDS images are useful in distinguishing mineral features with 
similar degrees of intensity in SEM images. Characterization of framboid 
size distributions allows the delineation of depositional redox history in 
geological records. We compared the performance of several object 
detection models to estimate the accuracy of each method using metrics 
including precision, recall, and F1 scores. The presented methods extract 
the size distributions of the framboids with up to 0.99 precision and 0.78 
recall. To extract the size of identified framboids, we used a post- 
processing Otsu binarization method. Lastly, to achieve additional 
flexibility for post processing, we present a comparison with an instance 
segmentation method and find a similar precision in its identification 
and measurement of pyrite framboids. 

2. Methods 

Pyrite framboids in shales from the Middle Devonian Marcellus 
Formation in the Appalachian foreland basin were assessed to delineate 
marine redox conditions at the time of deposition. Image acquisition, 
image processing by manual tracing, and the application of convolu-
tional neural networks (i.e., object detection and instance segmentation 
architectures) to extract pyrite framboid size distributions automatically 
are described. For the purpose of understanding local paleo-redox his-
tories, we traced only those pyrite framboids that were intact and 
otherwise unaltered (i.e., spherical and ellipsoidal). All other frag-
mented, dissolved, or altered framboids were not included in the present 

A. Davletshin et al.                                                                                                                                                                                                                             



Marine and Petroleum Geology 132 (2021) 105159

3

study. The method presented here is general, however, and can be 
modified to characterize additional classes of framboid geometries 
including fragmented and dissolved framboids. 

2.1. SEM image acquisition and analyses 

This study examined core samples from the Hamilton #1H Marcellus 
Shale of Lycoming County, Pennsylvania. Sixteen samples were selected 
on the basis of different lithofacies for micro-petrographic studies on 
texture, fabric, types of organic matter, mineral assemblage, and 
diagenesis (Ko, 2019). Specifically, core vertical heterogeneities were 
characterized using integrated wireline logs, high-resolution X-ray 
fluorescence (every 2 inches), and 69 thin section samples. Out of the 69 
thin sections, 16 samples were selected for framboid size distribution 
characterization. All samples were cut normal to the bedding plane. The 
image data contain ~6,800 pyrite framboids of interest that were used 
to train and test the CNNs. To minimize the influence of geologic het-
erogeneity, analysis of a larger volume of pyrite framboid data is useful 
and well-suited for machine learning approaches. Each sample was 
Ar-ion milled (Leica TIC 020 Triple Ion beam) for 10 h using an accel-
erating voltage of 8 keV and a current of 2.8 mA. The Ar-ion milled 
samples were imaged using a high-resolution field emission scanning 
electron microscope (FE-SEM, FEI Nova NanoSEM 430). The FESEM is 
equipped with two 30-mm2 Bruker XFlash silicon-drift EDS detectors for 
elemental identification. 

Two SEM datasets were obtained for framboid size characterization 
(Fig. 1a). The first dataset (Fig. 1a, Dataset 1: BSE/SE/TLD) contained 
128 grayscale BSE, secondary electron (SE), and SE through-the-lens 
detector (TLD) images. The grayscale BSE/SE/TLD images were 
collected at instrument magnifications of 459X to 70,000X (horizontal 
field width HFW = 4.26 μm to 651 μm), accelerating voltages of 2 to 15 
keV, and spatial resolutions of 1024 × 880 pixels (0.004–0.45 μm per 
pixel). The magnifications were chosen to determine the influence of 
pixel size on framboid size characterization (e.g., skew toward larger 

framboids due to pixelation at low magnifications). The second dataset 
(Fig. 1a, Dataset 2: BSE/EDS) comprised 32 colored images of iron (Fe) 
and sulfur (S) EDS maps overlaid on BSE images. The colored BSE/EDS 
maps were acquired at an accelerating voltage of 15 keV with spot sizes 
between 4.0 and 5.0 and total count times of t > 800 s. 

2.2. Ground truth labelling 

To serve as a testing benchmark for the convolutional neural net-
works (CNNs), a total of ~6,800 framboids from the BSE/SE/TLD and 
BSE/EDS micrographs were traced manually. The manually traced 
framboids served as ground truths to train and test the CNNs. Framboids 
were traced by two different geologists to minimize human biases. 
Statistics on human error are included in the supplementary materials 
(see SM Appendix A). 

2.3. Automated image processing workflow 

Two different CNN workflows were used to measure framboid size 
distributions (Fig. 1b): (i) an object detection-based method that pro-
poses small regions of interest that contain target features (i.e., fram-
boids), and (ii) an instance segmentation method that identifies each 
instance of the object of interest (i.e., framboids). The two workflows 
were trained and tested using the two datasets with a train/test split of 
~75%/25% for the grayscale BSE/SE/TLD images (95 images in 
training set, 33 images in testing set) and a train/test split of 81%/19% 
for the colored BSE/EDS images (26 images in training set, 6 images in 
testing set). We chose the train/test split based on the number of images 
available and the number of framboids contained within the images to 
achieve a split that is close to the 75/25% split that is used classically. 
Specifically, we chose this split to ensure a high enough training and 
testing data volume to minimize data variances (Perez and Wang, 2017). 
TensorFlow API (v 1.13.1) was run on a Windows-based computer (Intel 
Core i7, 4.20 GHz, 32 GB RAM and Nvidia GeForce GPU P4000 with 8 

Fig. 1. Overview of the two workflows used in this work. (a) Two datasets are prepared and used. Dataset 1 comprises 128 grayscale BSE/SE/TLD images and is 
divided into a training set (95 images) and a testing set (26 images). Dataset 2 comprises 32 colored BSE/EDS images and is divided into a training set (26 images) 
and a testing set (6 images). The data are annotated and augmented (see Table 1) prior to training. (b) ML-based workflows used to measure framboid size dis-
tributions. In Workflow 1, object detection proposes likely regions of framboids, extracts the objects of interest, and post-processes the objects into binary images. In 
Workflow 2, instance segmentation labels, bounds, and masks each instance of a framboid. (c) Model is validated by comparing CNN results with manually traced 
framboid size distributions. 
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GB memory) to apply CNN models to process the images. 
To improve the performance of the workflows, variability was 

introduced to the training dataset by (i) varying the imaging conditions 
(e.g., magnification, energy, etc.) of the BSE/SE/TLD and the BSE/EDS 
images, and (ii) augmenting the training sets to generate additional data 
for training (1408 BSE/SE/TLD and 352 BSE/EDS images in total). 
Augmentation strategies were applied to ~ half of the training datasets, 
and used methods including random cropping, flipping, contrast 
normalization, addition of Gaussian noise, multiplying, and perspective 
transformation (Table 1) to increase the volume of training data avail-
able. Importantly, high volumes of training data enable increased pre-
cision and recall of the CNN architectures (Perez and Wang, 2017). The 
image augmentation strategy here produced over 700,000 framboid 
instances for training and testing from an original data of ~6800 
framboid instances. 

2.3.1. Faster R–CNN object detection 
The object detection model used in this work, Faster R–CNN, is 

comprised of two separate modules. The first module is a deep fully 
convolutional network (FCN) that proposes regions that may contain 
framboids (i.e., region proposal network, RPN), and the second is a 
Faster R–CNN detector that uses the FCN proposed regions to determine 
the likelihood of a framboid in the proposed region. The two modules 
work together as a single system and provides advantages in perfor-
mance time and in improvements to the accuracy of proposed region 
within the image (Ren et al., 2016). Although other approaches are 
possible, including YOLO and Detectron2, Mask R–CNN achieves the 
highest precision and recall for complex systems such as geologic media. 
In particular, YOLO is excellent for real-time detection (e.g., in 
self-driving vehicles), but geologic materials do not generally evolve 
quickly in time. 

2.3.1.1. Region proposal network. In each image, possible framboid 
objects are suggested by an RPN. To generate a set of proposed regions, a 
small network translates and extracts possible regions of interest using a 
shared CNN. Redundant candidate bounding boxes were eliminated 
using non-maximum suppression. Each RPN sliding network uses size- 
varying spatial windows of the input image. All windows are down-
sized to lower-dimensional features that are fed to fully connected layers 
(i.e., box-regression and box classification layers). The candidate 
bounding boxes are then separated by a Region of Interest (RoI) layer. 
The final output is acquired by the Softmax multi-classification function 
and associated with a category label (Ren et al., 2016). 

2.3.1.2. Feature extraction. Accurate feature extraction of the target 
regions with framboids is the most important step in the automation 
process. CNN models including Inception V2, ResNet-50, ResNet-101, 
and Inception-ResNet-v2 were tested as candidate feature extraction 
networks for deep learning. The specific features of each architecture are 
introduced and explained below. 

ResNet was proposed by He et al. (2016) to ease the training of deep 
networks. In ResNet, residual learning frameworks use reformulate 
layers as learning residual functions with reference to layer inputs, and 
improves the capacity to optimize and improve the accuracy of the ar-
chitecture by increasing its depth. 

Inception was introduced by Ioffe and Szegedy (2015) and aims to 
leverage increased computational costs that are associated with pro-
cessing high volumes of data. Inception makes the convolution network 
wider rather than deeper. Inception V2 factorizes convolutions into 
smaller convolutions, and thus increases computational power and 
speed of the feature extraction process. 

Inception-ResNet is a hybrid module (Fig. 2) where training decreases 
significantly with residual connections (Szegedy et al., 2016a,b). Single 
frame recognition is improved on the ILSVRC 2012 classification task 
using Inception-ResNet. During training, images are propagated through 
the CNN architecture, and visual data are transformed into intermediate 
feature maps (Fig. 3). The intermediate feature maps are used to un-
derstand and improve the performance of CNN architectures. 

2.3.1.3. Loss function for object detection. To monitor the training 
process and to minimize method error, the total loss function of the RNP, 
L ({pi},{ti}), was calculated by summing the classification and locali-
zation losses (Ren et al., 2016): 

L ({pi,}, {ti,})=
1

Ncls

∑

i
Lcls

(
pi, p*

i

)
+ λ

1
Nloc

∑

i
p*

i Lloc
(
ti, t*i

)
(1)  

where i is the index of each reference box (i.e., anchor), p is the predicted 
probability that the reference box is a framboid object, and p* is a 
ground truth label where p* = 0 for positive anchors i and p* = 1 for 
negative i. Further, t is the coordinate vector of the predicted bounding 
box, t* is the coordinate vector of the ground truth box, λ is a balancing 
parameter, Ncls is the size of the mini batch, and Nloc is the number of 
anchor locations. The total classification loss, Lcls,T = 1

Ncls

∑

i
Lcls(pi, p*

i ), 

shows how accurately the CNN can predict the labels (i.e., whether the 
instance is a framboid or background), and the total localization loss, 
Lloc, T = λ 1

Nreg

∑

i
p*

i Lloc(ti, t*i ), shows the accuracy of the location estimate 

of the framboid instances. 

2.3.1.4. Post-processing. To convert proposed instances into binary 
masks for quantification, Otsu’s binarization was implemented as a post- 
processing algorithm (Otsu, 1979). Specifically, a bimodal intensity 
distribution was achieved such that the images consisted of bright 
framboids and a dark matrix. Otsu’s algorithm was used to find a 
threshold value that minimizes the weighted variance of the two 
thresholded groups. In the resulting binarized image, the white pixels 
within the labeled objects were then used to calculate framboid areas 
and equivalent diameters. Specifically, for ellipsoidal framboids, an 
equivalent circular area diameter (ECD) was defined such that the 
cross-sectional area of the framboid was equal to that of a circle with a 
diameter of the ECD. 

2.3.2. Instance segmentation and mask R–CNN based detection 
The second workflow (Fig. 1b, Workflow 2) used in this work was an 

instance segmentation architecture. In this framework, training datasets 
were fed to the Mask R–CNN framework to calculate framboid diameter 
distributions. The Mask R–CNN framework uses a ResNet101+FPN (feature 
pyramid networks) backbone to extract framboid instances by outputting a 
label, a bounding box, and an object mask for each candidate (He et al., 

Table 1 
Data augmentation strategy to increase variability and decrease overfitting.  

Filter Range  

Crop 0–10% Images are cropped from 0 to 10% on each side. 
Flip N/A Vertical flip. 
Contrast Normalization − 25% to +50% absolute value Changing the contrast in images by moving pixel values away from or closer to 128. 
Gaussian Noise 0.025 × white value for one channel Add Gaussian noise to images. 
Multiply − 20 to +20% Multiply pixel channel values by a random number between 0.8 and 1.2. 
Perspective transformation 1–10% Distort images locally.  
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2017). Importantly, Mask R–CNN enables pixel-to-pixel alignment and 
therefore does not require post-processing as in object detection. 

2.3.2.1. Loss function for instance segmentation. To monitor the training 
process for instance segmentation, a multi-task loss function, L, was 
calculated for each sampled RoI: 

L= Lcls,T + Lloc,T + Lmask,T (2)  

where Lcls,T is the classification loss, Lloc,T is the localization loss, and 
Lmask,T is an average cross-entropy loss. Recall that the sum of Lcls,T and 
Lloc,T is equal to the total loss from the object detection method (see Eq. 
(1)). The average cross-entropy loss, Lmask,T, is defined as: 

Lmask,T = −
1

output
∑output

i=1
yi⋅log ŷi + (1 − yi)⋅log

(

1 − ŷi

)

(3)  

where ŷi is the scalar value of model output, yi is the corresponding 
target value, and output is the number of scalar values in the output. 

2.4. Object detection task metrics 

The performance of each model was evaluated based on its recall, 
precision, and F1 metrics with respect to the “ground truth” labeling that 
was achieved by manual tracing. Recall, R, is the ratio of detected true 
positive (TP) pyrite framboids to the total number of framboids of the 
sample (Powers, 2011). The total number of framboids of the sample is 
the sum of the detected TP and the missed false negatives (FN). The 
recall of the model, therefore, is given by 

R=
TP

TP + FN
(4) 

A second performance metric is measured by the precision, P, of the 
model, given by the ratio of TPs to the total number of framboids traced 
automatically. The total number of framboids traced automatically in-
cludes both the true positives and false positives (FP, i.e., the number of 
misidentified framboids). The precision of the model is: 

P=
TP

TP + FP
(5) 

It is worthy to note that precision varies inversely with recall. That is, 
the lower the recall value, the higher the precision. To find a set of 

generalized metrics to evaluate the overall performance of the model, 
we use an F1 score that is found as a harmonic mean of the recall and 
precision. The F1 parameter is defined by: 

F1=
2 × P × R

P + R
(6) 

Using the recall, precision, and F1 scores, the performances of the 
CNN methods for both BSE/SE/TLD and the BSE/EDS testing sets were 
evaluated. To calculate performance metrics of framboid detection (i.e., 
precision, recall, and F1), all proposed framboid objects with intersec-
tion over union (IoU) greater than 10% were retained (Jaccard, 1912). 
IoU is defined by: 

IoU =
Area of overlap
Area of Union

(7)  

where the area of overlap is the area that both the predicted bounding 
box and the ground-truth bounding box exist, and the area of union is the 
total area that is covered by either the predicted bounding box or the 
ground-truth bounding box. 

2.5. Distribution fit evaluation 

Comparison of framboid size distributions from ML methods to 
manual tracing is not straightforward. In this work, three methods were 
applied to compare one-dimensional probability distributions for 
framboid sizes: (i) a graphical method, (ii) a Kolmogorov-Smirnov (K–S) 
test, and (iii) box-and-whisker plots. Graphical methods compare visu-
ally framboid size distributions from ML methods and manual (ground- 
truth) labeling. K–S tests measures the fit between two distributions (i.e., 
framboid size distributions from ML-based methods and from manual 
tracing). A K–S test provides two values: a D-statistic and a p-value that 
describes the probability of obtaining those test results (Stephens, 
1974). The D-statistic is found by Dn, m = supx

⃒
⃒F1,n(x) − F2,m(x)

⃒
⃒, where 

F1,n and F2,m are the empirical distribution functions of manual tracing 
and Faster R–CNN/Mask R–CNN tracing respectively, and sup is the 
supremum function (Stephens, 1974). If the p-value corresponding to 
the D-statistic value is higher than 0.05, then the null hypothesis cannot 
be rejected and therefore the two distributions agree. On the contrary, if 
the p-value is lower than 0.05, then the null hypothesis is rejected. 
Further, we use the K–S test to determine D-statistic values that show the 
absolute maximum distance between the empirical cumulative 

Fig. 2. Block diagram of the Inception-ResNet Faster R–CNN architecture.  

Fig. 3. Visual reproduction of the outputs of the convolutional layers showing the transformation of the original image (a) into feature maps (b to e) of the first 
convolution layer of the ResNet CNN. Each of the four images (b to e) represent each of the four channels. (f) A heat map representing the class probability score. 
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distribution functions (ECDFs) of the two samples. 

3. Results and discussion 

Two machine learning models were trained and tested to calculate 
framboid diameter distributions. An object detection model and an 
instance segmentation model were trained and tested on 128 grayscale 
BSE/SE/TLD images and 32 colored BSE/EDS images. To prevent 
overfitting of the models, the training dataset was divided into training 
and validation subsets. The models were trained using 95 BSE/SE/TLD 
images and 26 BSE/EDS images and were tested on 33 BSE/SE/TLD 
images and 6 BSE/EDS images. Results from the ML methods were 
compared with manually traced results to evaluate the performance of 
the models. 

3.1. Model training 

In order to trace the framboid instances accurately, stable minimum 
total loss function values are required. Using the grayscale BSE/SE/TLD 
training images, total loss functions for all models reached a stable value 
(Fig. 4). We note that the loss drops significantly after ~100 epochs here 
due to hyperparameter fine tuning and a large number of proposed re-
gions of interest. Similar results were obtained for the colored BSE/EDS 
training images (see SM Fig. 1). The training process was finished when 
the total loss function reached a stable minimum. Loss function curves 
were calculated for both training and validation datasets. During 
training, we used a classical 80/20 split ratio for training and validation 
data. Initial training datasets were split using a classical 80/20 ratio. 
During training, model loss functions converged and achieved a stable 
minimum by fine-tuning hyperparameters such as dropout, batch size, 
learning rate, and maximum number of proposals. Specifically, we 
optimized the CNNs to remove proposed regions of interest with low- 
quality instances (i.e., dropout), the number of images being pro-
cessed (i.e., batch size), the step size of each iteration when pushing a 
batch through the CNN (i.e., learning rate), and the maximum number of 
proposed regions of interest to identify instances of pyrite framboids (i. 
e., maximum number of proposals). The original SEM images were used 
to demonstrate the reliability of applying CNN models to the raw data. 
To achieve highest recall value, we increased the number of proposals at 
the first stage to track as many proposals as possible and decreased the 
IoU value. To achieve minimum loss function, we used dynamic learning 
rate that gradually decreased from 0.0003 to 0.00003 with step 0.00003 
after 5000 epochs. 

3.2. Framboid detection metrics 

To quantify framboid size distributions, framboid occurrences were 
first detected from the SEM datasets. The detection of framboids was 

evaluated for object detection and instance segmentation using 33 
grayscale BSE/SE/TLD and 6 colored BSE/EDS images (Fig. 5). Both 
object detection and instance segmentation identified only those in-
stances of spherical and/or elliptical pyrite framboids from the BSE/SE/ 
TLD and BSE/EDS images and no irregularly shaped pyrites. Perfor-
mance of the machine learning methods on the BSE/SE/TLD (Fig. 5a,c) 
and the BSE/EDS (Fig. 5b,d) datasets were comparable. The comparable 
performance on the two datasets, even though the colored BSE/EDS 
dataset is ~4 times smaller than the grayscale BSE/SE/TLD dataset, is 
due to the higher volume of data contained in the color data (i.e., red, 
green, and blue data as opposed to a single grayscale dataset). 

Results of framboid detection metrics for object detection and for 
instance segmentation are shown in Tables 2 and 3, respectively. The 
performance of the ResNet architecture applied in this work is compa-
rable with results reported in the literature (e.g., Wang et al., 2018). In 
order to capture framboid sizes accurately, we used an IoU threshold 
value of 90% and recall value of ~0.55. This combination of proposed 
recall and precision values maximizes the number of framboids captured 
and minimizes the errors associated with the missed (FN) and mis-
identified (FP) framboids. 

Overall, all CNN models tested in this work captured framboids with 
precisions up to 0.98 and recalls up to 0.78. A recall value of 0.78 means 
that the CNN detects 78% of the total number of spherical framboids 
contained within the tested image. The comparatively lower recall value 
here is due to the use of raw, unprocessed SEM images taken at various 
settings (e.g., magnification, voltage, etc.), the large number of fram-
boids in each image, and the number of proposed regions of interest. In 
this work, hyperparameters were tuned to calculate a statistical distri-
bution of pyrite framboid sizes to inform redox histories, and capturing 
all possible instances of framboids (i.e., recall approaching 1) was not 
the main goal. The CNNs here were trained and optimized to capture 
representative size distribution data from raw, unprocessed data to 
simplify the characterization process for geoscientists. Increased recall 
values are achievable by pre-processing the data or by increasing the 
number of proposed regions of interest. 

Notably, ResNet 100 and Inception-ResNet achieved the highest F1 
scores because of the presence of residual connections and batch 
normalization that help improve the training process. Because the 
trained and tested SEM images were acquired using a wide range of 
operating conditions (e.g., magnifications, energy, etc.), we expect to 
observe lower values for recall scores than those from training and 
testing datasets obtained using uniform operating conditions. Further, 
model performances on grayscale BSE/SE/TLD images and colored BSE/ 
EDS images cannot be compared directly because BSE/EDS dataset is ~4 
times smaller than the BSE/SE/TLD dataset. Similar precision, however, 
was achieved for the Inception-ResNet model using both datasets. A 
straightforward extension of this work includes the application of Mask 
R–CNN methods to identify pores, fractures, organic matter, and/or 
mineral grains in geological materials. 

3.3. Comparison of framboid size distribution results 

Framboid size distributions from BSE/SE/TLD grayscale images and 
for BSE/EDS images using object detection and instance segmentation 
agreed well with ground truth labeling (Figs. 6 and 7). To calculate 
framboid sizes, we (i) binarized the occurrences of framboids proposed 
by object detection, and (ii) used the instance segmentation output 
masks. Framboid sizes and their occurrence frequencies obtained using 
each method were compared with manually traced data, and frequency 
distributions of normalized equivalent circular diameter (ECD) of all 
framboids were recorded. In comparison to the manually traced ground 
truth, the framboid size distributions extracted by object detection are 
characterized by the same ranges and similar variability (Fig. 6). For 
instance segmentation, the extracted framboid size distributions are also 
comparable with the manually traced data (Fig. 6). 

Visual inspection of CNN traced and extracted framboid size 
Fig. 4. Loss functions of the BSE/SE/TLD dataset. Exponential smoothing was 
applied with a smoothing constant of 0.6. 
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distributions shows agreement between the manual and R–CNN traced 
distributions, especially in the case of the relatively large BSE/SE/TLD 
dataset. Although most framboid sizes were extracted accurately, the 
models are not perfect. For example, very small framboids (diameter ~ 2 
to 3 μm) were not identified correctly in low magnification images due 
to limitations in image resolution. Further, application of noise reduc-
tion filtering during post-processing may erode and eliminate very small 
framboids. In this work, the parameters for the post-processing algo-
rithm were kept uniform to compare the performance of the four 
different Faster R–CNN models. D-statistic and P-values calculated for 
framboid size distributions from both the object detection and instance 
segmentation models show agreement with manually traced results 
(Tables 4 and 5). 

P-values computed using D-statistic values show that the frequency 
distribution functions are comparable to manually traced frequency 
distribution functions with insignificant deviations. K–S tests were 
applied on normalized distributions that were acquired from raw dis-
tributions after assigning the size of the framboid to the specific range. 
Among the CNN models, Inception-ResNet showed the best performance 
with D-statistic value of 0.14 and P-value of 0.99. 

The best performing models, ResNet 100 and Inception-ResNet, solve 
the object detection task most accurately. Subsequent post-processing 
with Otsu thresholding gives the most precise model for capturing of 
framboid size distributions. Overall, all models trace and extract fram-
boids that capture the manually traced ground-truth distribution. 
Importantly, once trained, the ML methods require only ≲ 6 s to process 
a BSE/SE/TLD image that contains ~50 framboid objects, a ~100-fold 
improvement on current manual tracing (~10 min/image). 

3.4. Framboid size distributions informing changes in ocean oxygen level 

Common tools used to evaluate local paleo-redox conditions include 
Fe speciation, δ56Fe, macrofauna, biomarkers, ichnofacies index, δ98Mo, 
δ53Cr, Ce/Ce* ratio and REEs profiles. For the present study area, the 
maturity of the Marcellus Shale limits the use of Fe speciation, δ56Fe, 
biomarkers, δ98Mo, δ53Cr, Ce/Ce* ratio and REEs. Specifically, the 
concentration of trace elements is affected significantly by sedimenta-
tion rate. In the foreland basin setting, the sedimentation rate can vary 
during the formation of the foreland and it is therefore challenging to 
delineate the redox history using the concentration of redox-sensitive 
trace elements such as Mo, V, and U alone. In the deep marine settings 
during the Marcellus deposition, bioturbation is rare and limited. Ich-
nofacies data, as a result, are to elucidate the local redox conditions. 

To understand the sedimentary redox conditions of the Marcellus 
Shale in the Middle Devonian foreland basin, we integrated our pyrite 
framboid size distribution data derived from the CNN architectures with 

Fig. 5. Examples of circular framboid detection on 
test images. (a) Identification of framboids using ob-
ject detection, i.e., Faster R–CNN models, from BSE/ 
SE/TLD grayscale images. All traced instances con-
taining circular framboids are labeled with IoU values 
(e.g., 99%). (b) Object detection of BSE/EDS maps. 
(c) Instance segmentation model of grayscale BSE/ 
SE/TLD images with the original raw SEM image 
(left) and the processed image with traced spherical 
framboids on BSE image using Mask R–CNN (right). 
(d) Instance segmentation of BSE/EDS maps images 
with the original raw SEM image (left) and the pro-
cessed image with traced spherical framboids on BSE 
image using Mask R–CNN (right).   

Table 2 
Performance of the object detection Faster R–CNN models for BSE/TLD and 
BSE/EDS dataset.   

BSE/SE/TLD images BSE/EDS images  

Precision Recall F1 Precision Recall F1 

Inception V2 0.98 0.62 0.74 0.95 0.48 0.59 
ResNet 50 0.96 0.61 0.73 0.92 0.52 0.60 
ResNet 100 0.96 0.76 0.83 1.00 0.44 0.56 
Inception-ResNet 0.98 0.78 0.87 0.98 0.53 0.64  

Table 3 
Performance of the instance segmentation Mask R–CNN models for BSE/SE/TLD 
and BSE/EDS datasets.   

BSE/SE/TLD images BSE/EDS images  

Precision Recall F1 Precision Recall F1 

Mask R–CNN 0.96 0.60 0.72 0.98 0.48 0.64  
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data on lithofacies, fauna assemblage, and major and trace elemental 
profiles. Specifically, we incorporated a high-resolution (~2-inch in-
terval) major and trace elemental profile of the Marcellus cored interval 
and a detailed core description, including thin-section and SEM petro-
graphical studies, of biota assemblage and variation, sedimentary 
structures, extent of bioturbation, organic matter type and content (Ko 
et al., 2019). 

The framboid size distributions computed from the ML methods were 
plotted as a function of sample depth and compared to the distributions 
calculated from manual tracing (Table 6). The data are presented as box- 
and-whisker plots in sedimentary succession (Fig. 8). Variations in the 
burial redox conditions manifest as changes in the mean and standard 
deviation (SD) of the framboid size distributions across depths. Recall 
that oxygen-deprived euxinic and anoxic bottom water conditions pro-
duce abundant small framboids with a narrow size distribution (trans-
port limited pyrite formation) whereas oxygen-available oxic/dysoxic 
bottom waters produce larger framboids and with large size distribu-
tions (reaction limited pyrite formation). The framboid size distributions 

Fig. 6. Framboid size distributions measured using object detection in agreement with results from manual tracing for (a) the grayscale BSE/SE/TLD dataset and (b) 
the colored BSE/EDS dataset. 

Fig. 7. Framboid size distribution measured using instance segmentation in agreement with results from manual tracing for (a) the grayscale BSE/SE/TLD dataset 
and (b) the colored BSE/EDS dataset. 

Table 4 
D-statistic and P-values for distribution fitness evaluation of framboid size dis-
tributions obtained using object detection.   

BSE/SE/TLD images BSE/EDS images  

D-statistic P-value D-statistic P-value 

Inception V2 0.14 0.98 0.095 0.99 
ResNet 50 0.19 0.85 0.095 0.99 
ResNet 100 0.17 0.83 0.047 0.99 
Inception-ResNet 0.14 0.99 0.047 0.99  

Table 5 
D-statistic and P-values for distribution fitness evaluation of framboid size dis-
tributions obtained using instance segmentation.   

BSE/SE/TLD images BSE/EDS images  

D-statistic P-value D-statistic P-value 

Mask R–CNN 0.14 0.98 0.095 0.99  

Table 6 
Quantitative data to estimate framboid size distribution for manual and Faster R–CNN Inception-ResNet tracing.   

Manual Inception-ResNet 

Depth [ft] Count Mean SD Min Max Count Mean SD Min Max 

7846.42 713 4.07 1.29 1.56 10.37 261 4.29 1.42 1.59 13.89 
7869 178 4.43 1.58 2.00 10.98 99 4.57 1.62 2.47 9.83 
7883.25 328 4.27 1.85 1.20 14.47 169 4.36 1.80 1.79 14.41 
7917.25 224 3.76 1.28 1.68 11.77 112 4.12 1.44 2.12 11.95 
7924.85 249 3.80 1.35 1.49 10.56 143 3.92 1.34 1.62 10.20 
7954.15 115 3.98 1.26 1.77 8.53 85 3.62 1.18 1.61 8.27  
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calculated using the CNNs show that for burial depths of ~7840–7960 ft 
in the Marcellus Shale, the majority of the framboid sizes were within 5 
μm (Fig. 8) and thereby indicating a persistent euxinic and/or anoxic 
bottom water condition in the deep region of the foreland basin during 
the Middle Devonian. Characterization data show the existence of larger 
framboids (~6–15 μm) in each sample and suggest the availability of 
relatively oxygenated conditions in the deep waters of the foreland 
basin. 

Framboid size distributions measured from this cored well were 
compared to those from two others in Upshur Co. and Greene Co. (Blood 
and Lash, 2015). Overall, the sizes of framboids in our locality are 
smaller due to the proximity of the well to deeper regions of the foreland 
basin. Further, the biota in thin sections suggest variation in redox 
conditions in the upper Marcellus. 

3.5. Challenges in CNN image processing of framboids 

Although the results of framboid size distributions computed using 
object detection and instance segmentation agreed with the manually 
traced data, some challenges were encountered. Specifically, data avail-
ability, single-channel grayscale images, and inconsistent imaging magni-
fications limit the accuracy of extracted data significantly. For example, 
low-magnification images have the advantage of capturing a significant 
number of framboids to improve the volume of data, but the accuracy of the 
size detection method was reduced due to insufficient spatial resolution of 
the images. Specifically, accuracy of the framboid size distribution 
measured by CNN methods varied inversely with magnification (Fig. 9). To 
estimate the effect of magnification, 1806 framboids traced manually and 
869 framboids traced by the Inception-ResNet model were compared. For 
each image, the mean framboid diameter computed by the CNN models 
were compared with results from manual tracing. We find that images 
captured at pixel resolutions greater than 0.25 μm/pixel track a relatively 
high number of framboids but the mean framboid diameter deviates 

significantly from the manually traced results. A possible cause for this 
deviation could be due to the inability of the R–CNN method to trace small 
framboid instances due to a limited number of framboid pixels. 

A second challenge in using CNN to quantify framboid size distributions 
stem from the associated computational (Table 7). Using the Windows- 
based computer (Intel Core i7, 4.20 GHz, 32 GB RAM and Nvidia 
GeForce GPU P4000 with 8 GB memory), the method with the best per-
formance, Inception-ResNet, required 26 h of computing time to train the 

Fig. 8. Box-and whisker plots for the tested images associated with depth in the Marcellus Shale. BSE/SE/TLD dataset.  

Fig. 9. Inverse effects of SEM magnification on the accuracy of framboid size 
detection using CNN image processing methods. 
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grayscale BSE/SE/TLD dataset (95 original images and ~1044 augmented 
images). Similarly, 23 h was required to train the colored BSE/EDS dataset 
(26 original images and ~286 augmented images). This challenge, favor-
ably, can be overcome by the use of computing clusters with parallel 
computing capabilities, high performance cloud computing, higher power 
GPUs, and/or multiple cores. 

4. Conclusion 

This work presents machine-learning as an automated tool to analyze 
micrographs of geological samples. Full automation of image processing 
removes human biasing, is fast and robust, and, importantly, enables the 
processing of high volumes of visual data. In this work, we demonstrated 
the utility of ML-based methods by characterizing pyrite framboid size 
distributions to inform the depositional redox conditions of geological 
samples. Object detection models, including Inception V2, ResNet 50, 
ResNet 100, and Inception-ResNet, and an instance segmentation model, 
Mask R–CNN, demonstrate the applicability of CNN-based image ana-
lyses techniques toward geological micrograph processing. Notably, the 
Inception-ResNet object detection model achieved the highest perfor-
mance metrics (precision 0.99, recall 0.78). Framboid size distributions 
obtained from manual and ML-methods were compared using a K–S test, 
visual inspection, and box-and-whisker plots and show agreement be-
tween the methods. Favorably, for the Inception-ResNet model, the K–S 
test yielded a P-value of 0.99 and a D-statistic of 0.13. 

In this work, grayscale BSE/SE/TLD and color BSE/EDS images were 
used as two separate datasets to demonstrate ML-based model perfor-
mance. We find that in analyzing a smaller colored BSE/EDS dataset, 
both the object detection and instance segmentation models leveraged 
the multi-channel nature of the colored image data to achieve similar 
performance with higher volume grayscale BSE/SE/TLD data. Further, 
we find that images with magnification lower than ~1000 X (~0.3 μm/ 
pixel) resulted in decrease precision of framboid size distributions 
despite capturing a greater number of framboids. Importantly, once 
trained, the ML methods are ~100 times faster than current manual 
tracing. Automated imaging provides a path toward capturing increased 
numbers of high magnification images to resolve issues related to small 
datasets. Broadly, the ML-based approach demonstrated in this work can 
be extended to quantify grayscale BSE/SE/TLD and colored EDS/EDS 
micrographs of other geological features, including pores/cracks, 
organic matter, carbonates, and siliciclastic minerals, to enable further 
geochemical and geomechanical understanding of the Earth. The use of 
ML in geologic image characterization improves both the quantity and 
quality of image analyses that are currently performed by hand tracing. 
In addition to confirming manual identification, once trained, the CNNs 
here enable the fast and reliable processing of a huge volume of data, 
something that was not previously possible. Improved data volumes 
eliminate challenges in analyses including biasing due to visual selection 
and inadequate sampling. 
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